Sindbad~EG File Manager
�
MٜgP@ �
�~ � d Z ddlmZ ddlmZmZmZmZ ddlZddl Z ddl
mZ ddlm
Z
mZmZmZmZmZmZ ddlZddlZddlZddlmZmZ ddlmZ dd lmZmZm Z dd
l!m"Z" ddl#m$Z$ ddl%m&Z& dd
l'm(Z( ddl)m*Z+ ddl,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3 ddl4m5Z5m6Z6m7Z7m8Z8 ddl9m:Z: ddl;m<Z<m=Z=m>Z> ddl?m@Z@ ddlAmBZBmCZCmDZDmEZEmFZFmGZG ddlHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZP ddlQmRZRmSZSmTZT ddlUmVZVmWZW ddlXmYZY ddlZm[Z[m\Z\m]Z]m^Z^ ddl_m`Z`maZambZcmdZdmeZemfZfmgZg ddlhmiZi ddljmkZk ddllmmZm ddlnmoZompZp ddlqmrZr dd lsmtZt dd!lumvZv dd"lwmxZymzZzm{Z{ dd#l|m}Z}m~Z~ dd$lm�Z�m�Z� dd%l�m�Z� dd&l�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z� ddl�m�c m�c maZ� dd'l�m�Z� dd(l�m�Z�m�Z� dd)l�m�Z�m�Z� dd*l�m�Z� dd+l�m�Z� dd,l�m�Z�m�Z� dd-l�m�Z� dd.l�m�Z� ddl�m�c m�c m�Z� dd/l�m�Z�m�Z�m�Z� ddl�Z�erVdd0l�m�Z� dd1l�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z�m�Z� dd2l�m�Z� dd3l�m�Z� d4gZ�d5d4d6d7d8d9d4d:d;d<� Z�d=� Z� G d>� d4ea�j� e}� Z�y)?zG
Data structure for 1-dimensional cross-sectional and time series data
� )�annotations)�Hashable�Iterable�Mapping�SequenceN)�dedent)�IO�
TYPE_CHECKING�Any�Callable�Literal�cast�overload)�using_copy_on_write�warn_copy_on_write)�_get_option)�lib�
properties�reshape)�is_range_indexer)�PYPY)� REF_COUNT)�import_optional_dependency)�function)�ChainedAssignmentError�InvalidIndexError�_chained_assignment_method_msg�_chained_assignment_msg�&_chained_assignment_warning_method_msg�_chained_assignment_warning_msg�
_check_cacher)�Appender�Substitution�deprecate_nonkeyword_arguments�doc)�find_stack_level)�validate_ascending�validate_bool_kwarg�validate_percentile)�astype_is_view)�LossySetitemError�"construct_1d_arraylike_from_scalar�find_common_type�infer_dtype_from�maybe_box_native�maybe_cast_pointwise_result)�is_dict_like�
is_integer�is_iterator�is_list_like�is_object_dtype� is_scalar�pandas_dtype�validate_all_hashable)�CategoricalDtype�ExtensionDtype�SparseDtype)�ABCDataFrame� ABCSeries)�is_hashable)�isna�na_value_for_dtype�notna�remove_na_arraylike)�
algorithms�base�common�missing�nanops�ops� roperator)�CachedAccessor)�SeriesApply)�ExtensionArray)�ListAccessor�StructAccessor)�CategoricalAccessor)�SparseAccessor)�StringDtype)�array�
extract_array�sanitize_array)�NDFrame�make_doc)�disallow_ndim_indexing�
unpack_1tuple)�CombinedDatetimelikeProperties)�
DatetimeIndex�Index�
MultiIndex�PeriodIndex�
default_index�ensure_index)�maybe_droplevels)�check_bool_indexer�check_dict_or_set_indexers)�SingleArrayManager�SingleBlockManager)�selectn)�_shared_docs)�ensure_key_mapped�nargsort)�
StringMethods)�to_datetime)�INFO_DOCSTRING�
SeriesInfo�series_sub_kwargs)�BlockValuesRefs) �AggFuncType�AnyAll�AnyArrayLike� ArrayLike�Axis�AxisInt�CorrelationMethod�DropKeep�Dtype�DtypeObj�FilePath� Frequency�IgnoreRaise�IndexKeyFunc�
IndexLabel�Level�MutableMappingT�
NaPosition�NumpySorter�NumpyValueArrayLike�QuantileInterpolation�
ReindexMethod�Renamer�Scalar�Self�
SingleManager�SortKind�StorageOptions�Suffixes�ValueKeyFunc�WriteBuffer�npt�� DataFrame��
SeriesGroupBy�Series�indexz{0 or 'index'}zXaxis : {0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.z[inplace : bool, default False
If True, performs operation inplace and returns None.�
np.ndarray� z�
index : array-like, optional
New labels for the index. Preferably an Index object to avoid
duplicating data.
axis : int or str, optional
Unused.) �axes�klass�axes_single_arg�axis�inplace�unique�
duplicated�optional_by�optional_reindexc �<