Sindbad~EG File Manager
"""
masked_accumulations.py is for accumulation algorithms using a mask-based approach
for missing values.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Callable,
)
import numpy as np
if TYPE_CHECKING:
from pandas._typing import npt
def _cum_func(
func: Callable,
values: np.ndarray,
mask: npt.NDArray[np.bool_],
*,
skipna: bool = True,
):
"""
Accumulations for 1D masked array.
We will modify values in place to replace NAs with the appropriate fill value.
Parameters
----------
func : np.cumsum, np.cumprod, np.maximum.accumulate, np.minimum.accumulate
values : np.ndarray
Numpy array with the values (can be of any dtype that support the
operation).
mask : np.ndarray
Boolean numpy array (True values indicate missing values).
skipna : bool, default True
Whether to skip NA.
"""
dtype_info: np.iinfo | np.finfo
if values.dtype.kind == "f":
dtype_info = np.finfo(values.dtype.type)
elif values.dtype.kind in "iu":
dtype_info = np.iinfo(values.dtype.type)
elif values.dtype.kind == "b":
# Max value of bool is 1, but since we are setting into a boolean
# array, 255 is fine as well. Min value has to be 0 when setting
# into the boolean array.
dtype_info = np.iinfo(np.uint8)
else:
raise NotImplementedError(
f"No masked accumulation defined for dtype {values.dtype.type}"
)
try:
fill_value = {
np.cumprod: 1,
np.maximum.accumulate: dtype_info.min,
np.cumsum: 0,
np.minimum.accumulate: dtype_info.max,
}[func]
except KeyError:
raise NotImplementedError(
f"No accumulation for {func} implemented on BaseMaskedArray"
)
values[mask] = fill_value
if not skipna:
mask = np.maximum.accumulate(mask)
values = func(values)
return values, mask
def cumsum(values: np.ndarray, mask: npt.NDArray[np.bool_], *, skipna: bool = True):
return _cum_func(np.cumsum, values, mask, skipna=skipna)
def cumprod(values: np.ndarray, mask: npt.NDArray[np.bool_], *, skipna: bool = True):
return _cum_func(np.cumprod, values, mask, skipna=skipna)
def cummin(values: np.ndarray, mask: npt.NDArray[np.bool_], *, skipna: bool = True):
return _cum_func(np.minimum.accumulate, values, mask, skipna=skipna)
def cummax(values: np.ndarray, mask: npt.NDArray[np.bool_], *, skipna: bool = True):
return _cum_func(np.maximum.accumulate, values, mask, skipna=skipna)
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists