Sindbad~EG File Manager
�
Mٜg> � �P � d Z ddlmZ ddlmZ ddlmZ edi e��Zdd�ZdZ ed� j dd d
� Z ed� j dd d
� Z ed� j dd d
� Z
ed
� j dd d
� Z ed� j dd d
� ZdZddd�Zy)z<Any shareable docstring components for rolling/expanding/ewm� )�annotations)�dedent)�_shared_docsc �* � | � ddt | � z � d�S )zCreate numpydoc section header�
�-)�len)�headers �A/usr/local/lib/python3.12/site-packages/pandas/core/window/doc.py�create_section_headerr s � ��X�R��c�&�k�)�*�"�-�-� z;
Calculate the {window_method} {aggregation_description}.
zp
Series or DataFrame
Return type is the same as the original object with ``np.float64`` dtype.
r � � a6
pandas.Series.{window_method} : Calling {window_method} with Series data.
pandas.DataFrame.{window_method} : Calling {window_method} with DataFrames.
pandas.Series.{agg_method} : Aggregating {agg_method} for Series.
pandas.DataFrame.{agg_method} : Aggregating {agg_method} for DataFrame.
z�
numeric_only : bool, default False
Include only float, int, boolean columns.
.. versionadded:: 1.5.0
z^
**kwargs
Keyword arguments to configure the ``SciPy`` weighted window type.
a/
func : function
Must produce a single value from an ndarray input if ``raw=True``
or a single value from a Series if ``raw=False``. Can also accept a
Numba JIT function with ``engine='numba'`` specified.
raw : bool, default False
* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray
objects instead.
If you are just applying a NumPy reduction function this will
achieve much better performance.
engine : str, default None
* ``'cython'`` : Runs rolling apply through C-extensions from cython.
* ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
Only available when ``raw`` is set to ``True``.
* ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba``
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
and ``parallel`` dictionary keys. The values must either be ``True`` or
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
applied to both the ``func`` and the ``apply`` rolling aggregation.
args : tuple, default None
Positional arguments to be passed into func.
kwargs : dict, default None
Keyword arguments to be passed into func.
z�See :ref:`window.numba_engine` and :ref:`enhancingperf.numba` for extended documentation and performance considerations for the Numba engine.
c �Z � t d� j ddd� j d| � S )Na
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba``
.. versionadded:: {version}.0
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
and ``parallel`` dictionary keys. The values must either be ``True`` or
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}``
.. versionadded:: {version}.0
r r r z {version})r �replace)�versions r �window_agg_numba_parametersr ] s0 � ��
�
�&