Sindbad~EG File Manager
�
MٜgJ- � �J � d Z ddlmZ ddlmZmZmZ ddlZddlm Z ddl
mZ ddlm
Z
ddlmZ dd lmZ dd
lmZ ddlmZmZmZmZ ddlmZmZmZmZ dd
lm Z ddl!m"c m#Z$ ddl%m&Z& erddl'm(Z(m)Z) ddlm*Z* ddl+m,Z, dZ-dd�Z.d� Z/dd�Z0dd�Z1 d dd�Z2dd�Z3y)zH
Table Schema builders
https://specs.frictionlessdata.io/table-schema/
� )�annotations)�
TYPE_CHECKING�Any�castN)�lib)�ujson_loads)� timezones)�freq_to_period_freqstr)�find_stack_level)� _registry)�
is_bool_dtype�is_integer_dtype�is_numeric_dtype�is_string_dtype)�CategoricalDtype�DatetimeTZDtype�ExtensionDtype�PeriodDtype)� DataFrame)� to_offset)�DtypeObj�JSONSerializable)�Series)�
MultiIndexz1.4.0c � � t | � ryt | � ryt | � ryt j | d� st | t t f� ryt j | d� ryt | t � ryt | � ry y)
a�
Convert a NumPy / pandas type to its corresponding json_table.
Parameters
----------
x : np.dtype or ExtensionDtype
Returns
-------
str
the Table Schema data types
Notes
-----
This table shows the relationship between NumPy / pandas dtypes,
and Table Schema dtypes.
============== =================
Pandas type Table Schema type
============== =================
int64 integer
float64 number
bool boolean
datetime64[ns] datetime
timedelta64[ns] duration
object str
categorical any
=============== =================
�integer�boolean�number�M�datetime�m�duration�any�string)
r r
r r �is_np_dtype�
isinstancer r r r )�xs �G/usr/local/lib/python3.12/site-packages/pandas/io/json/_table_schema.py�as_json_table_typer) 5 sp � �<