Sindbad~EG File Manager
// Copyright 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Lovell Fuller and contributors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cmath>
#include <map>
#include <memory>
#include <numeric>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>
#include <vips/vips8>
#include <napi.h>
#include "common.h"
#include "operations.h"
#include "pipeline.h"
#if defined(WIN32)
#define STAT64_STRUCT __stat64
#define STAT64_FUNCTION _stat64
#elif defined(__APPLE__)
#define STAT64_STRUCT stat
#define STAT64_FUNCTION stat
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#define STAT64_STRUCT stat
#define STAT64_FUNCTION stat
#else
#define STAT64_STRUCT stat64
#define STAT64_FUNCTION stat64
#endif
class PipelineWorker : public Napi::AsyncWorker {
public:
PipelineWorker(Napi::Function callback, PipelineBaton *baton,
Napi::Function debuglog, Napi::Function queueListener) :
Napi::AsyncWorker(callback),
baton(baton),
debuglog(Napi::Persistent(debuglog)),
queueListener(Napi::Persistent(queueListener)) {}
~PipelineWorker() {}
// libuv worker
void Execute() {
// Decrement queued task counter
g_atomic_int_dec_and_test(&sharp::counterQueue);
// Increment processing task counter
g_atomic_int_inc(&sharp::counterProcess);
try {
// Open input
vips::VImage image;
sharp::ImageType inputImageType;
std::tie(image, inputImageType) = sharp::OpenInput(baton->input);
// Calculate angle of rotation
VipsAngle rotation;
if (baton->useExifOrientation) {
// Rotate and flip image according to Exif orientation
bool flip;
bool flop;
std::tie(rotation, flip, flop) = CalculateExifRotationAndFlip(sharp::ExifOrientation(image));
baton->flip = baton->flip || flip;
baton->flop = baton->flop || flop;
} else {
rotation = CalculateAngleRotation(baton->angle);
}
// Rotate pre-extract
if (baton->rotateBeforePreExtract) {
if (rotation != VIPS_ANGLE_D0) {
image = image.rot(rotation);
image = sharp::RemoveExifOrientation(image);
}
if (baton->rotationAngle != 0.0) {
std::vector<double> background;
std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground);
image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background));
}
}
// Trim
if (baton->trimThreshold > 0.0) {
image = sharp::Trim(image, baton->trimThreshold);
baton->trimOffsetLeft = image.xoffset();
baton->trimOffsetTop = image.yoffset();
}
// Pre extraction
if (baton->topOffsetPre != -1) {
image = image.extract_area(baton->leftOffsetPre, baton->topOffsetPre, baton->widthPre, baton->heightPre);
}
// Get pre-resize image width and height
int inputWidth = image.width();
int inputHeight = image.height();
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
// Swap input output width and height when rotating by 90 or 270 degrees
std::swap(inputWidth, inputHeight);
}
// If withoutEnlargement is specified,
// Override target width and height if exceeds respective value from input file
if (baton->withoutEnlargement) {
if (baton->width > inputWidth) {
baton->width = inputWidth;
}
if (baton->height > inputHeight) {
baton->height = inputHeight;
}
}
// Scaling calculations
double xfactor = 1.0;
double yfactor = 1.0;
int targetResizeWidth = baton->width;
int targetResizeHeight = baton->height;
if (baton->width > 0 && baton->height > 0) {
// Fixed width and height
xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
switch (baton->canvas) {
case Canvas::CROP:
if (xfactor < yfactor) {
targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::EMBED:
if (xfactor > yfactor) {
targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::MAX:
if (xfactor > yfactor) {
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::MIN:
if (xfactor < yfactor) {
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::IGNORE_ASPECT:
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
std::swap(xfactor, yfactor);
}
break;
}
} else if (baton->width > 0) {
// Fixed width
xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
if (baton->canvas == Canvas::IGNORE_ASPECT) {
targetResizeHeight = baton->height = inputHeight;
} else {
// Auto height
yfactor = xfactor;
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / yfactor));
}
} else if (baton->height > 0) {
// Fixed height
yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
if (baton->canvas == Canvas::IGNORE_ASPECT) {
targetResizeWidth = baton->width = inputWidth;
} else {
// Auto width
xfactor = yfactor;
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / xfactor));
}
} else {
// Identity transform
baton->width = inputWidth;
baton->height = inputHeight;
}
// Calculate integral box shrink
int xshrink = std::max(1, static_cast<int>(floor(xfactor)));
int yshrink = std::max(1, static_cast<int>(floor(yfactor)));
// Calculate residual float affine transformation
double xresidual = static_cast<double>(xshrink) / xfactor;
double yresidual = static_cast<double>(yshrink) / yfactor;
// If integral x and y shrink are equal, try to use shrink-on-load for JPEG and WebP,
// but not when applying gamma correction, pre-resize extract or trim
int shrink_on_load = 1;
int shrink_on_load_factor = 1;
// Leave at least a factor of two for the final resize step, when fastShrinkOnLoad: false
// for more consistent results and avoid occasional small image shifting
if (!baton->fastShrinkOnLoad) {
shrink_on_load_factor = 2;
}
if (
xshrink == yshrink && xshrink >= 2 * shrink_on_load_factor &&
(inputImageType == sharp::ImageType::JPEG || inputImageType == sharp::ImageType::WEBP) &&
baton->gamma == 0 && baton->topOffsetPre == -1 && baton->trimThreshold == 0.0 &&
image.width() > 3 && image.height() > 3 && baton->input->pages == 1
) {
if (xshrink >= 8 * shrink_on_load_factor) {
xfactor = xfactor / 8;
yfactor = yfactor / 8;
shrink_on_load = 8;
} else if (xshrink >= 4 * shrink_on_load_factor) {
xfactor = xfactor / 4;
yfactor = yfactor / 4;
shrink_on_load = 4;
} else if (xshrink >= 2 * shrink_on_load_factor) {
xfactor = xfactor / 2;
yfactor = yfactor / 2;
shrink_on_load = 2;
}
}
// Help ensure a final kernel-based reduction to prevent shrink aliasing
if (shrink_on_load > 1 && (xresidual == 1.0 || yresidual == 1.0)) {
shrink_on_load = shrink_on_load / 2;
xfactor = xfactor * 2;
yfactor = yfactor * 2;
}
if (shrink_on_load > 1) {
// Reload input using shrink-on-load
vips::VOption *option = VImage::option()
->set("access", baton->input->access)
->set("shrink", shrink_on_load)
->set("fail", baton->input->failOnError);
if (baton->input->buffer != nullptr) {
VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength);
if (inputImageType == sharp::ImageType::JPEG) {
// Reload JPEG buffer
image = VImage::jpegload_buffer(blob, option);
} else {
// Reload WebP buffer
image = VImage::webpload_buffer(blob, option);
}
vips_area_unref(reinterpret_cast<VipsArea*>(blob));
} else {
if (inputImageType == sharp::ImageType::JPEG) {
// Reload JPEG file
image = VImage::jpegload(const_cast<char*>(baton->input->file.data()), option);
} else {
// Reload WebP file
image = VImage::webpload(const_cast<char*>(baton->input->file.data()), option);
}
}
// Recalculate integral shrink and double residual
int const shrunkOnLoadWidth = image.width();
int const shrunkOnLoadHeight = image.height();
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
// Swap when rotating by 90 or 270 degrees
xfactor = static_cast<double>(shrunkOnLoadWidth) / static_cast<double>(targetResizeHeight);
yfactor = static_cast<double>(shrunkOnLoadHeight) / static_cast<double>(targetResizeWidth);
} else {
xfactor = static_cast<double>(shrunkOnLoadWidth) / static_cast<double>(targetResizeWidth);
yfactor = static_cast<double>(shrunkOnLoadHeight) / static_cast<double>(targetResizeHeight);
}
}
// Ensure we're using a device-independent colour space
if (
sharp::HasProfile(image) &&
image.interpretation() != VIPS_INTERPRETATION_LABS &&
image.interpretation() != VIPS_INTERPRETATION_GREY16
) {
// Convert to sRGB using embedded profile
try {
image = image.icc_transform("srgb", VImage::option()
->set("embedded", TRUE)
->set("depth", image.interpretation() == VIPS_INTERPRETATION_RGB16 ? 16 : 8)
->set("intent", VIPS_INTENT_PERCEPTUAL));
} catch(...) {
// Ignore failure of embedded profile
}
} else if (image.interpretation() == VIPS_INTERPRETATION_CMYK) {
image = image.icc_transform("srgb", VImage::option()
->set("input_profile", "cmyk")
->set("intent", VIPS_INTENT_PERCEPTUAL));
}
// Flatten image to remove alpha channel
if (baton->flatten && sharp::HasAlpha(image)) {
// Scale up 8-bit values to match 16-bit input image
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
// Background colour
std::vector<double> background {
baton->flattenBackground[0] * multiplier,
baton->flattenBackground[1] * multiplier,
baton->flattenBackground[2] * multiplier
};
image = image.flatten(VImage::option()
->set("background", background));
}
// Negate the colours in the image
if (baton->negate) {
image = image.invert();
}
// Gamma encoding (darken)
if (baton->gamma >= 1 && baton->gamma <= 3) {
image = sharp::Gamma(image, 1.0 / baton->gamma);
}
// Convert to greyscale (linear, therefore after gamma encoding, if any)
if (baton->greyscale) {
image = image.colourspace(VIPS_INTERPRETATION_B_W);
}
bool const shouldResize = xfactor != 1.0 || yfactor != 1.0;
bool const shouldBlur = baton->blurSigma != 0.0;
bool const shouldConv = baton->convKernelWidth * baton->convKernelHeight > 0;
bool const shouldSharpen = baton->sharpenSigma != 0.0;
bool const shouldApplyMedian = baton->medianSize > 0;
bool const shouldComposite = !baton->composite.empty();
bool const shouldModulate = baton->brightness != 1.0 || baton->saturation != 1.0 || baton->hue != 0.0;
bool const shouldApplyClahe = baton->claheWidth != 0 && baton->claheHeight != 0;
if (shouldComposite && !sharp::HasAlpha(image)) {
image = sharp::EnsureAlpha(image, 1);
}
bool const shouldPremultiplyAlpha = sharp::HasAlpha(image) &&
(shouldResize || shouldBlur || shouldConv || shouldSharpen || shouldComposite);
// Premultiply image alpha channel before all transformations to avoid
// dark fringing around bright pixels
// See: http://entropymine.com/imageworsener/resizealpha/
if (shouldPremultiplyAlpha) {
image = image.premultiply();
}
// Resize
if (shouldResize) {
VipsKernel kernel = static_cast<VipsKernel>(
vips_enum_from_nick(nullptr, VIPS_TYPE_KERNEL, baton->kernel.data()));
if (
kernel != VIPS_KERNEL_NEAREST && kernel != VIPS_KERNEL_CUBIC && kernel != VIPS_KERNEL_LANCZOS2 &&
kernel != VIPS_KERNEL_LANCZOS3 && kernel != VIPS_KERNEL_MITCHELL
) {
throw vips::VError("Unknown kernel");
}
// Ensure shortest edge is at least 1 pixel
if (image.width() / xfactor < 0.5) {
xfactor = 2 * image.width();
baton->width = 1;
}
if (image.height() / yfactor < 0.5) {
yfactor = 2 * image.height();
baton->height = 1;
}
image = image.resize(1.0 / xfactor, VImage::option()
->set("vscale", 1.0 / yfactor)
->set("kernel", kernel));
}
// Rotate post-extract 90-angle
if (!baton->rotateBeforePreExtract && rotation != VIPS_ANGLE_D0) {
image = image.rot(rotation);
image = sharp::RemoveExifOrientation(image);
}
// Flip (mirror about Y axis)
if (baton->flip) {
image = image.flip(VIPS_DIRECTION_VERTICAL);
image = sharp::RemoveExifOrientation(image);
}
// Flop (mirror about X axis)
if (baton->flop) {
image = image.flip(VIPS_DIRECTION_HORIZONTAL);
image = sharp::RemoveExifOrientation(image);
}
// Join additional color channels to the image
if (baton->joinChannelIn.size() > 0) {
VImage joinImage;
sharp::ImageType joinImageType = sharp::ImageType::UNKNOWN;
for (unsigned int i = 0; i < baton->joinChannelIn.size(); i++) {
std::tie(joinImage, joinImageType) = sharp::OpenInput(baton->joinChannelIn[i]);
image = image.bandjoin(joinImage);
}
image = image.copy(VImage::option()->set("interpretation", baton->colourspace));
}
// Crop/embed
if (image.width() != baton->width || image.height() != baton->height) {
if (baton->canvas == Canvas::EMBED) {
std::vector<double> background;
std::tie(image, background) = sharp::ApplyAlpha(image, baton->resizeBackground);
// Embed
// Calculate where to position the embeded image if gravity specified, else center.
int left;
int top;
left = static_cast<int>(round((baton->width - image.width()) / 2));
top = static_cast<int>(round((baton->height - image.height()) / 2));
int width = std::max(image.width(), baton->width);
int height = std::max(image.height(), baton->height);
std::tie(left, top) = sharp::CalculateEmbedPosition(
image.width(), image.height(), baton->width, baton->height, baton->position);
image = image.embed(left, top, width, height, VImage::option()
->set("extend", VIPS_EXTEND_BACKGROUND)
->set("background", background));
} else if (
baton->canvas != Canvas::IGNORE_ASPECT &&
(image.width() > baton->width || image.height() > baton->height)
) {
// Crop/max/min
if (baton->position < 9) {
// Gravity-based crop
int left;
int top;
std::tie(left, top) = sharp::CalculateCrop(
image.width(), image.height(), baton->width, baton->height, baton->position);
int width = std::min(image.width(), baton->width);
int height = std::min(image.height(), baton->height);
image = image.extract_area(left, top, width, height);
} else {
// Attention-based or Entropy-based crop
if (baton->width > image.width()) {
baton->width = image.width();
}
if (baton->height > image.height()) {
baton->height = image.height();
}
image = image.tilecache(VImage::option()
->set("access", VIPS_ACCESS_RANDOM)
->set("threaded", TRUE));
image = image.smartcrop(baton->width, baton->height, VImage::option()
->set("interesting", baton->position == 16 ? VIPS_INTERESTING_ENTROPY : VIPS_INTERESTING_ATTENTION));
baton->hasCropOffset = true;
baton->cropOffsetLeft = static_cast<int>(image.xoffset());
baton->cropOffsetTop = static_cast<int>(image.yoffset());
}
}
}
// Rotate post-extract non-90 angle
if (!baton->rotateBeforePreExtract && baton->rotationAngle != 0.0) {
std::vector<double> background;
std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground);
image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background));
}
// Post extraction
if (baton->topOffsetPost != -1) {
image = image.extract_area(
baton->leftOffsetPost, baton->topOffsetPost, baton->widthPost, baton->heightPost);
}
// Affine transform
if (baton->affineMatrix.size() > 0) {
std::vector<double> background;
std::tie(image, background) = sharp::ApplyAlpha(image, baton->affineBackground);
image = image.affine(baton->affineMatrix, VImage::option()->set("background", background)
->set("idx", baton->affineIdx)
->set("idy", baton->affineIdy)
->set("odx", baton->affineOdx)
->set("ody", baton->affineOdy)
->set("interpolate", baton->affineInterpolator));
}
// Extend edges
if (baton->extendTop > 0 || baton->extendBottom > 0 || baton->extendLeft > 0 || baton->extendRight > 0) {
std::vector<double> background;
std::tie(image, background) = sharp::ApplyAlpha(image, baton->extendBackground);
// Embed
baton->width = image.width() + baton->extendLeft + baton->extendRight;
baton->height = image.height() + baton->extendTop + baton->extendBottom;
image = image.embed(baton->extendLeft, baton->extendTop, baton->width, baton->height,
VImage::option()->set("extend", VIPS_EXTEND_BACKGROUND)->set("background", background));
}
// Median - must happen before blurring, due to the utility of blurring after thresholding
if (shouldApplyMedian) {
image = image.median(baton->medianSize);
}
// Threshold - must happen before blurring, due to the utility of blurring after thresholding
if (baton->threshold != 0) {
image = sharp::Threshold(image, baton->threshold, baton->thresholdGrayscale);
}
// Blur
if (shouldBlur) {
image = sharp::Blur(image, baton->blurSigma);
}
// Convolve
if (shouldConv) {
image = sharp::Convolve(image,
baton->convKernelWidth, baton->convKernelHeight,
baton->convKernelScale, baton->convKernelOffset,
baton->convKernel);
}
// Recomb
if (baton->recombMatrix != NULL) {
image = sharp::Recomb(image, baton->recombMatrix);
}
if (shouldModulate) {
image = sharp::Modulate(image, baton->brightness, baton->saturation, baton->hue);
}
// Sharpen
if (shouldSharpen) {
image = sharp::Sharpen(image, baton->sharpenSigma, baton->sharpenFlat, baton->sharpenJagged);
}
// Composite
if (shouldComposite) {
for (Composite *composite : baton->composite) {
VImage compositeImage;
sharp::ImageType compositeImageType = sharp::ImageType::UNKNOWN;
std::tie(compositeImage, compositeImageType) = OpenInput(composite->input);
// Verify within current dimensions
if (compositeImage.width() > image.width() || compositeImage.height() > image.height()) {
throw vips::VError("Image to composite must have same dimensions or smaller");
}
// Check if overlay is tiled
if (composite->tile) {
int across = 0;
int down = 0;
// Use gravity in overlay
if (compositeImage.width() <= baton->width) {
across = static_cast<int>(ceil(static_cast<double>(image.width()) / compositeImage.width()));
// Ensure odd number of tiles across when gravity is centre, north or south
if (composite->gravity == 0 || composite->gravity == 1 || composite->gravity == 3) {
across |= 1;
}
}
if (compositeImage.height() <= baton->height) {
down = static_cast<int>(ceil(static_cast<double>(image.height()) / compositeImage.height()));
// Ensure odd number of tiles down when gravity is centre, east or west
if (composite->gravity == 0 || composite->gravity == 2 || composite->gravity == 4) {
down |= 1;
}
}
if (across != 0 || down != 0) {
int left;
int top;
compositeImage = compositeImage.replicate(across, down);
if (composite->hasOffset) {
std::tie(left, top) = sharp::CalculateCrop(
compositeImage.width(), compositeImage.height(), image.width(), image.height(),
composite->left, composite->top);
} else {
std::tie(left, top) = sharp::CalculateCrop(
compositeImage.width(), compositeImage.height(), image.width(), image.height(), composite->gravity);
}
compositeImage = compositeImage.extract_area(left, top, image.width(), image.height());
}
// gravity was used for extract_area, set it back to its default value of 0
composite->gravity = 0;
}
// Ensure image to composite is sRGB with premultiplied alpha
compositeImage = compositeImage.colourspace(VIPS_INTERPRETATION_sRGB);
if (!sharp::HasAlpha(compositeImage)) {
compositeImage = sharp::EnsureAlpha(compositeImage, 1);
}
if (!composite->premultiplied) compositeImage = compositeImage.premultiply();
// Calculate position
int left;
int top;
if (composite->hasOffset) {
// Composite image at given offsets
if (composite->tile) {
std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(),
compositeImage.width(), compositeImage.height(), composite->left, composite->top);
} else {
left = composite->left;
top = composite->top;
}
} else {
// Composite image with given gravity
std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(),
compositeImage.width(), compositeImage.height(), composite->gravity);
}
// Composite
image = image.composite2(compositeImage, composite->mode, VImage::option()
->set("premultiplied", TRUE)
->set("x", left)
->set("y", top));
}
}
// Reverse premultiplication after all transformations:
if (shouldPremultiplyAlpha) {
image = image.unpremultiply();
// Cast pixel values to integer
if (sharp::Is16Bit(image.interpretation())) {
image = image.cast(VIPS_FORMAT_USHORT);
} else {
image = image.cast(VIPS_FORMAT_UCHAR);
}
}
baton->premultiplied = shouldPremultiplyAlpha;
// Gamma decoding (brighten)
if (baton->gammaOut >= 1 && baton->gammaOut <= 3) {
image = sharp::Gamma(image, baton->gammaOut);
}
// Linear adjustment (a * in + b)
if (baton->linearA != 1.0 || baton->linearB != 0.0) {
image = sharp::Linear(image, baton->linearA, baton->linearB);
}
// Apply normalisation - stretch luminance to cover full dynamic range
if (baton->normalise) {
image = sharp::Normalise(image);
}
// Apply contrast limiting adaptive histogram equalization (CLAHE)
if (shouldApplyClahe) {
image = sharp::Clahe(image, baton->claheWidth, baton->claheHeight, baton->claheMaxSlope);
}
// Apply bitwise boolean operation between images
if (baton->boolean != nullptr) {
VImage booleanImage;
sharp::ImageType booleanImageType = sharp::ImageType::UNKNOWN;
std::tie(booleanImage, booleanImageType) = sharp::OpenInput(baton->boolean);
image = sharp::Boolean(image, booleanImage, baton->booleanOp);
}
// Apply per-channel Bandbool bitwise operations after all other operations
if (baton->bandBoolOp >= VIPS_OPERATION_BOOLEAN_AND && baton->bandBoolOp < VIPS_OPERATION_BOOLEAN_LAST) {
image = sharp::Bandbool(image, baton->bandBoolOp);
}
// Tint the image
if (baton->tintA < 128.0 || baton->tintB < 128.0) {
image = sharp::Tint(image, baton->tintA, baton->tintB);
}
// Extract an image channel (aka vips band)
if (baton->extractChannel > -1) {
if (baton->extractChannel >= image.bands()) {
if (baton->extractChannel == 3 && sharp::HasAlpha(image)) {
baton->extractChannel = image.bands() - 1;
} else {
(baton->err).append("Cannot extract channel from image. Too few channels in image.");
return Error();
}
}
VipsInterpretation const interpretation = sharp::Is16Bit(image.interpretation())
? VIPS_INTERPRETATION_GREY16
: VIPS_INTERPRETATION_B_W;
image = image
.extract_band(baton->extractChannel)
.copy(VImage::option()->set("interpretation", interpretation));
}
// Remove alpha channel, if any
if (baton->removeAlpha) {
image = sharp::RemoveAlpha(image);
}
// Ensure alpha channel, if missing
if (baton->ensureAlpha != -1) {
image = sharp::EnsureAlpha(image, baton->ensureAlpha);
}
// Convert image to sRGB, if not already
if (sharp::Is16Bit(image.interpretation())) {
image = image.cast(VIPS_FORMAT_USHORT);
}
if (image.interpretation() != baton->colourspace) {
// Convert colourspace, pass the current known interpretation so libvips doesn't have to guess
image = image.colourspace(baton->colourspace, VImage::option()->set("source_space", image.interpretation()));
// Transform colours from embedded profile to output profile
if (baton->withMetadata && sharp::HasProfile(image)) {
image = image.icc_transform(vips_enum_nick(VIPS_TYPE_INTERPRETATION, baton->colourspace),
VImage::option()->set("embedded", TRUE));
}
}
// Apply output ICC profile
if (!baton->withMetadataIcc.empty()) {
image = image.icc_transform(
const_cast<char*>(baton->withMetadataIcc.data()),
VImage::option()
->set("input_profile", "srgb")
->set("intent", VIPS_INTENT_PERCEPTUAL));
}
// Override EXIF Orientation tag
if (baton->withMetadata && baton->withMetadataOrientation != -1) {
image = sharp::SetExifOrientation(image, baton->withMetadataOrientation);
}
// Override pixel density
if (baton->withMetadataDensity > 0) {
image = sharp::SetDensity(image, baton->withMetadataDensity);
}
// Metadata key/value pairs, e.g. EXIF
if (!baton->withMetadataStrs.empty()) {
image = image.copy();
for (const auto& s : baton->withMetadataStrs) {
image.set(s.first.data(), s.second.data());
}
}
// Number of channels used in output image
baton->channels = image.bands();
baton->width = image.width();
baton->height = image.height();
bool const supportsGifOutput = vips_type_find("VipsOperation", "magicksave") != 0 &&
vips_type_find("VipsOperation", "magicksave_buffer") != 0;
image = sharp::SetAnimationProperties(
image,
baton->pageHeight,
baton->delay,
baton->loop);
// Output
if (baton->fileOut.empty()) {
// Buffer output
if (baton->formatOut == "jpeg" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::JPEG)) {
// Write JPEG to buffer
sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG);
VipsArea *area = reinterpret_cast<VipsArea*>(image.jpegsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->jpegQuality)
->set("interlace", baton->jpegProgressive)
->set("subsample_mode", baton->jpegChromaSubsampling == "4:4:4"
? VIPS_FOREIGN_JPEG_SUBSAMPLE_OFF
: VIPS_FOREIGN_JPEG_SUBSAMPLE_ON)
->set("trellis_quant", baton->jpegTrellisQuantisation)
->set("quant_table", baton->jpegQuantisationTable)
->set("overshoot_deringing", baton->jpegOvershootDeringing)
->set("optimize_scans", baton->jpegOptimiseScans)
->set("optimize_coding", baton->jpegOptimiseCoding)));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "jpeg";
if (baton->colourspace == VIPS_INTERPRETATION_CMYK) {
baton->channels = std::min(baton->channels, 4);
} else {
baton->channels = std::min(baton->channels, 3);
}
} else if (baton->formatOut == "png" || (baton->formatOut == "input" &&
(inputImageType == sharp::ImageType::PNG || (inputImageType == sharp::ImageType::GIF && !supportsGifOutput) ||
inputImageType == sharp::ImageType::SVG))) {
// Write PNG to buffer
sharp::AssertImageTypeDimensions(image, sharp::ImageType::PNG);
VipsArea *area = reinterpret_cast<VipsArea*>(image.pngsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("interlace", baton->pngProgressive)
->set("compression", baton->pngCompressionLevel)
->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE)
->set("palette", baton->pngPalette)
->set("Q", baton->pngQuality)
->set("colours", baton->pngColours)
->set("dither", baton->pngDither)));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "png";
} else if (baton->formatOut == "webp" ||
(baton->formatOut == "input" && inputImageType == sharp::ImageType::WEBP)) {
// Write WEBP to buffer
sharp::AssertImageTypeDimensions(image, sharp::ImageType::WEBP);
VipsArea *area = reinterpret_cast<VipsArea*>(image.webpsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->webpQuality)
->set("lossless", baton->webpLossless)
->set("near_lossless", baton->webpNearLossless)
->set("smart_subsample", baton->webpSmartSubsample)
->set("reduction_effort", baton->webpReductionEffort)
->set("alpha_q", baton->webpAlphaQuality)));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "webp";
} else if (baton->formatOut == "gif" ||
(baton->formatOut == "input" && inputImageType == sharp::ImageType::GIF && supportsGifOutput)) {
// Write GIF to buffer
sharp::AssertImageTypeDimensions(image, sharp::ImageType::GIF);
VipsArea *area = reinterpret_cast<VipsArea*>(image.magicksave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("optimize_gif_frames", TRUE)
->set("optimize_gif_transparency", TRUE)
->set("format", "gif")));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "gif";
} else if (baton->formatOut == "tiff" ||
(baton->formatOut == "input" && inputImageType == sharp::ImageType::TIFF)) {
// Write TIFF to buffer
if (baton->tiffCompression == VIPS_FOREIGN_TIFF_COMPRESSION_JPEG) {
sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG);
baton->channels = std::min(baton->channels, 3);
}
// Cast pixel values to float, if required
if (baton->tiffPredictor == VIPS_FOREIGN_TIFF_PREDICTOR_FLOAT) {
image = image.cast(VIPS_FORMAT_FLOAT);
}
VipsArea *area = reinterpret_cast<VipsArea*>(image.tiffsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->tiffQuality)
->set("bitdepth", baton->tiffBitdepth)
->set("compression", baton->tiffCompression)
->set("predictor", baton->tiffPredictor)
->set("pyramid", baton->tiffPyramid)
->set("tile", baton->tiffTile)
->set("tile_height", baton->tiffTileHeight)
->set("tile_width", baton->tiffTileWidth)
->set("xres", baton->tiffXres)
->set("yres", baton->tiffYres)));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "tiff";
} else if (baton->formatOut == "heif" ||
(baton->formatOut == "input" && inputImageType == sharp::ImageType::HEIF)) {
// Write HEIF to buffer
VipsArea *area = reinterpret_cast<VipsArea*>(image.heifsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("compression", baton->heifCompression)
->set("Q", baton->heifQuality)
->set("speed", baton->heifSpeed)
#if defined(VIPS_TYPE_FOREIGN_SUBSAMPLE)
->set("subsample_mode", baton->heifChromaSubsampling == "4:4:4"
? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON)
#endif
->set("lossless", baton->heifLossless)));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "heif";
} else if (baton->formatOut == "raw" ||
(baton->formatOut == "input" && inputImageType == sharp::ImageType::RAW)) {
// Write raw, uncompressed image data to buffer
if (baton->greyscale || image.interpretation() == VIPS_INTERPRETATION_B_W) {
// Extract first band for greyscale image
image = image[0];
baton->channels = 1;
}
if (image.format() != VIPS_FORMAT_UCHAR) {
// Cast pixels to uint8 (unsigned char)
image = image.cast(VIPS_FORMAT_UCHAR);
}
// Get raw image data
baton->bufferOut = static_cast<char*>(image.write_to_memory(&baton->bufferOutLength));
if (baton->bufferOut == nullptr) {
(baton->err).append("Could not allocate enough memory for raw output");
return Error();
}
baton->formatOut = "raw";
} else {
// Unsupported output format
(baton->err).append("Unsupported output format ");
if (baton->formatOut == "input") {
(baton->err).append(ImageTypeId(inputImageType));
} else {
(baton->err).append(baton->formatOut);
}
return Error();
}
} else {
// File output
bool const isJpeg = sharp::IsJpeg(baton->fileOut);
bool const isPng = sharp::IsPng(baton->fileOut);
bool const isWebp = sharp::IsWebp(baton->fileOut);
bool const isGif = sharp::IsGif(baton->fileOut);
bool const isTiff = sharp::IsTiff(baton->fileOut);
bool const isHeif = sharp::IsHeif(baton->fileOut);
bool const isDz = sharp::IsDz(baton->fileOut);
bool const isDzZip = sharp::IsDzZip(baton->fileOut);
bool const isV = sharp::IsV(baton->fileOut);
bool const mightMatchInput = baton->formatOut == "input";
bool const willMatchInput = mightMatchInput &&
!(isJpeg || isPng || isWebp || isGif || isTiff || isHeif || isDz || isDzZip || isV);
if (baton->formatOut == "jpeg" || (mightMatchInput && isJpeg) ||
(willMatchInput && inputImageType == sharp::ImageType::JPEG)) {
// Write JPEG to file
sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG);
image.jpegsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->jpegQuality)
->set("interlace", baton->jpegProgressive)
->set("subsample_mode", baton->jpegChromaSubsampling == "4:4:4"
? VIPS_FOREIGN_JPEG_SUBSAMPLE_OFF
: VIPS_FOREIGN_JPEG_SUBSAMPLE_ON)
->set("trellis_quant", baton->jpegTrellisQuantisation)
->set("quant_table", baton->jpegQuantisationTable)
->set("overshoot_deringing", baton->jpegOvershootDeringing)
->set("optimize_scans", baton->jpegOptimiseScans)
->set("optimize_coding", baton->jpegOptimiseCoding));
baton->formatOut = "jpeg";
baton->channels = std::min(baton->channels, 3);
} else if (baton->formatOut == "png" || (mightMatchInput && isPng) || (willMatchInput &&
(inputImageType == sharp::ImageType::PNG || (inputImageType == sharp::ImageType::GIF && !supportsGifOutput) ||
inputImageType == sharp::ImageType::SVG))) {
// Write PNG to file
sharp::AssertImageTypeDimensions(image, sharp::ImageType::PNG);
image.pngsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("interlace", baton->pngProgressive)
->set("compression", baton->pngCompressionLevel)
->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE)
->set("palette", baton->pngPalette)
->set("Q", baton->pngQuality)
->set("colours", baton->pngColours)
->set("dither", baton->pngDither));
baton->formatOut = "png";
} else if (baton->formatOut == "webp" || (mightMatchInput && isWebp) ||
(willMatchInput && inputImageType == sharp::ImageType::WEBP)) {
// Write WEBP to file
sharp::AssertImageTypeDimensions(image, sharp::ImageType::WEBP);
image.webpsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->webpQuality)
->set("lossless", baton->webpLossless)
->set("near_lossless", baton->webpNearLossless)
->set("smart_subsample", baton->webpSmartSubsample)
->set("reduction_effort", baton->webpReductionEffort)
->set("alpha_q", baton->webpAlphaQuality));
baton->formatOut = "webp";
} else if (baton->formatOut == "gif" || (mightMatchInput && isGif) ||
(willMatchInput && inputImageType == sharp::ImageType::GIF && supportsGifOutput)) {
// Write GIF to file
sharp::AssertImageTypeDimensions(image, sharp::ImageType::GIF);
image.magicksave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("optimize_gif_frames", TRUE)
->set("optimize_gif_transparency", TRUE)
->set("format", "gif"));
baton->formatOut = "gif";
} else if (baton->formatOut == "tiff" || (mightMatchInput && isTiff) ||
(willMatchInput && inputImageType == sharp::ImageType::TIFF)) {
// Write TIFF to file
if (baton->tiffCompression == VIPS_FOREIGN_TIFF_COMPRESSION_JPEG) {
sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG);
baton->channels = std::min(baton->channels, 3);
}
// Cast pixel values to float, if required
if (baton->tiffPredictor == VIPS_FOREIGN_TIFF_PREDICTOR_FLOAT) {
image = image.cast(VIPS_FORMAT_FLOAT);
}
image.tiffsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->tiffQuality)
->set("bitdepth", baton->tiffBitdepth)
->set("compression", baton->tiffCompression)
->set("predictor", baton->tiffPredictor)
->set("pyramid", baton->tiffPyramid)
->set("tile", baton->tiffTile)
->set("tile_height", baton->tiffTileHeight)
->set("tile_width", baton->tiffTileWidth)
->set("xres", baton->tiffXres)
->set("yres", baton->tiffYres));
baton->formatOut = "tiff";
} else if (baton->formatOut == "heif" || (mightMatchInput && isHeif) ||
(willMatchInput && inputImageType == sharp::ImageType::HEIF)) {
// Write HEIF to file
image.heifsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->heifQuality)
->set("compression", baton->heifCompression)
->set("speed", baton->heifSpeed)
#if defined(VIPS_TYPE_FOREIGN_SUBSAMPLE)
->set("subsample_mode", baton->heifChromaSubsampling == "4:4:4"
? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON)
#endif
->set("lossless", baton->heifLossless));
baton->formatOut = "heif";
} else if (baton->formatOut == "dz" || isDz || isDzZip) {
if (isDzZip) {
baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_ZIP;
}
// Forward format options through suffix
std::string suffix;
if (baton->tileFormat == "png") {
std::vector<std::pair<std::string, std::string>> options {
{"interlace", baton->pngProgressive ? "TRUE" : "FALSE"},
{"compression", std::to_string(baton->pngCompressionLevel)},
{"filter", baton->pngAdaptiveFiltering ? "all" : "none"}
};
suffix = AssembleSuffixString(".png", options);
} else if (baton->tileFormat == "webp") {
std::vector<std::pair<std::string, std::string>> options {
{"Q", std::to_string(baton->webpQuality)},
{"alpha_q", std::to_string(baton->webpAlphaQuality)},
{"lossless", baton->webpLossless ? "TRUE" : "FALSE"},
{"near_lossless", baton->webpNearLossless ? "TRUE" : "FALSE"},
{"smart_subsample", baton->webpSmartSubsample ? "TRUE" : "FALSE"},
{"reduction_effort", std::to_string(baton->webpReductionEffort)}
};
suffix = AssembleSuffixString(".webp", options);
} else {
std::vector<std::pair<std::string, std::string>> options {
{"Q", std::to_string(baton->jpegQuality)},
{"interlace", baton->jpegProgressive ? "TRUE" : "FALSE"},
{"subsample_mode", baton->jpegChromaSubsampling == "4:4:4" ? "off" : "on"},
{"trellis_quant", baton->jpegTrellisQuantisation ? "TRUE" : "FALSE"},
{"quant_table", std::to_string(baton->jpegQuantisationTable)},
{"overshoot_deringing", baton->jpegOvershootDeringing ? "TRUE": "FALSE"},
{"optimize_scans", baton->jpegOptimiseScans ? "TRUE": "FALSE"},
{"optimize_coding", baton->jpegOptimiseCoding ? "TRUE": "FALSE"}
};
std::string extname = baton->tileLayout == VIPS_FOREIGN_DZ_LAYOUT_DZ ? ".jpeg" : ".jpg";
suffix = AssembleSuffixString(extname, options);
}
// Remove alpha channel from tile background if image does not contain an alpha channel
if (!sharp::HasAlpha(image)) {
baton->tileBackground.pop_back();
}
// Write DZ to file
vips::VOption *options = VImage::option()
->set("strip", !baton->withMetadata)
->set("tile_size", baton->tileSize)
->set("overlap", baton->tileOverlap)
->set("container", baton->tileContainer)
->set("layout", baton->tileLayout)
->set("suffix", const_cast<char*>(suffix.data()))
->set("angle", CalculateAngleRotation(baton->tileAngle))
->set("background", baton->tileBackground)
->set("centre", baton->tileCentre)
->set("id", const_cast<char*>(baton->tileId.data()))
->set("skip_blanks", baton->tileSkipBlanks);
// libvips chooses a default depth based on layout. Instead of replicating that logic here by
// not passing anything - libvips will handle choice
if (baton->tileDepth < VIPS_FOREIGN_DZ_DEPTH_LAST) {
options->set("depth", baton->tileDepth);
}
image.dzsave(const_cast<char*>(baton->fileOut.data()), options);
baton->formatOut = "dz";
} else if (baton->formatOut == "v" || (mightMatchInput && isV) ||
(willMatchInput && inputImageType == sharp::ImageType::VIPS)) {
// Write V to file
image.vipssave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata));
baton->formatOut = "v";
} else {
// Unsupported output format
(baton->err).append("Unsupported output format " + baton->fileOut);
return Error();
}
}
} catch (vips::VError const &err) {
char const *what = err.what();
if (what && what[0]) {
(baton->err).append(what);
} else {
(baton->err).append("Unknown error");
}
}
// Clean up libvips' per-request data and threads
vips_error_clear();
vips_thread_shutdown();
}
void OnOK() {
Napi::Env env = Env();
Napi::HandleScope scope(env);
// Handle warnings
std::string warning = sharp::VipsWarningPop();
while (!warning.empty()) {
debuglog.Call({ Napi::String::New(env, warning) });
warning = sharp::VipsWarningPop();
}
if (baton->err.empty()) {
int width = baton->width;
int height = baton->height;
if (baton->topOffsetPre != -1 && (baton->width == -1 || baton->height == -1)) {
width = baton->widthPre;
height = baton->heightPre;
}
if (baton->topOffsetPost != -1) {
width = baton->widthPost;
height = baton->heightPost;
}
// Info Object
Napi::Object info = Napi::Object::New(env);
info.Set("format", baton->formatOut);
info.Set("width", static_cast<uint32_t>(width));
info.Set("height", static_cast<uint32_t>(height));
info.Set("channels", static_cast<uint32_t>(baton->channels));
info.Set("premultiplied", baton->premultiplied);
if (baton->hasCropOffset) {
info.Set("cropOffsetLeft", static_cast<int32_t>(baton->cropOffsetLeft));
info.Set("cropOffsetTop", static_cast<int32_t>(baton->cropOffsetTop));
}
if (baton->trimThreshold > 0.0) {
info.Set("trimOffsetLeft", static_cast<int32_t>(baton->trimOffsetLeft));
info.Set("trimOffsetTop", static_cast<int32_t>(baton->trimOffsetTop));
}
if (baton->bufferOutLength > 0) {
// Add buffer size to info
info.Set("size", static_cast<uint32_t>(baton->bufferOutLength));
// Pass ownership of output data to Buffer instance
Napi::Buffer<char> data = Napi::Buffer<char>::New(env, static_cast<char*>(baton->bufferOut),
baton->bufferOutLength, sharp::FreeCallback);
Callback().MakeCallback(Receiver().Value(), { env.Null(), data, info });
} else {
// Add file size to info
struct STAT64_STRUCT st;
if (STAT64_FUNCTION(baton->fileOut.data(), &st) == 0) {
info.Set("size", static_cast<uint32_t>(st.st_size));
}
Callback().MakeCallback(Receiver().Value(), { env.Null(), info });
}
} else {
Callback().MakeCallback(Receiver().Value(), { Napi::Error::New(env, baton->err).Value() });
}
// Delete baton
delete baton->input;
delete baton->boolean;
for (Composite *composite : baton->composite) {
delete composite->input;
delete composite;
}
for (sharp::InputDescriptor *input : baton->joinChannelIn) {
delete input;
}
delete baton;
// Decrement processing task counter
g_atomic_int_dec_and_test(&sharp::counterProcess);
Napi::Number queueLength = Napi::Number::New(env, static_cast<double>(sharp::counterQueue));
queueListener.Call(Receiver().Value(), { queueLength });
}
private:
PipelineBaton *baton;
Napi::FunctionReference debuglog;
Napi::FunctionReference queueListener;
/*
Calculate the angle of rotation and need-to-flip for the given Exif orientation
By default, returns zero, i.e. no rotation.
*/
std::tuple<VipsAngle, bool, bool>
CalculateExifRotationAndFlip(int const exifOrientation) {
VipsAngle rotate = VIPS_ANGLE_D0;
bool flip = FALSE;
bool flop = FALSE;
switch (exifOrientation) {
case 6: rotate = VIPS_ANGLE_D90; break;
case 3: rotate = VIPS_ANGLE_D180; break;
case 8: rotate = VIPS_ANGLE_D270; break;
case 2: flop = TRUE; break; // flop 1
case 7: flip = TRUE; rotate = VIPS_ANGLE_D90; break; // flip 6
case 4: flop = TRUE; rotate = VIPS_ANGLE_D180; break; // flop 3
case 5: flip = TRUE; rotate = VIPS_ANGLE_D270; break; // flip 8
}
return std::make_tuple(rotate, flip, flop);
}
/*
Calculate the rotation for the given angle.
Supports any positive or negative angle that is a multiple of 90.
*/
VipsAngle
CalculateAngleRotation(int angle) {
angle = angle % 360;
if (angle < 0)
angle = 360 + angle;
switch (angle) {
case 90: return VIPS_ANGLE_D90;
case 180: return VIPS_ANGLE_D180;
case 270: return VIPS_ANGLE_D270;
}
return VIPS_ANGLE_D0;
}
/*
Assemble the suffix argument to dzsave, which is the format (by extname)
alongisde comma-separated arguments to the corresponding `formatsave` vips
action.
*/
std::string
AssembleSuffixString(std::string extname, std::vector<std::pair<std::string, std::string>> options) {
std::string argument;
for (auto const &option : options) {
if (!argument.empty()) {
argument += ",";
}
argument += option.first + "=" + option.second;
}
return extname + "[" + argument + "]";
}
/*
Clear all thread-local data.
*/
void Error() {
// Clean up libvips' per-request data and threads
vips_error_clear();
vips_thread_shutdown();
}
};
/*
pipeline(options, output, callback)
*/
Napi::Value pipeline(const Napi::CallbackInfo& info) {
// V8 objects are converted to non-V8 types held in the baton struct
PipelineBaton *baton = new PipelineBaton;
Napi::Object options = info[0].As<Napi::Object>();
// Input
baton->input = sharp::CreateInputDescriptor(options.Get("input").As<Napi::Object>());
// Extract image options
baton->topOffsetPre = sharp::AttrAsInt32(options, "topOffsetPre");
baton->leftOffsetPre = sharp::AttrAsInt32(options, "leftOffsetPre");
baton->widthPre = sharp::AttrAsInt32(options, "widthPre");
baton->heightPre = sharp::AttrAsInt32(options, "heightPre");
baton->topOffsetPost = sharp::AttrAsInt32(options, "topOffsetPost");
baton->leftOffsetPost = sharp::AttrAsInt32(options, "leftOffsetPost");
baton->widthPost = sharp::AttrAsInt32(options, "widthPost");
baton->heightPost = sharp::AttrAsInt32(options, "heightPost");
// Output image dimensions
baton->width = sharp::AttrAsInt32(options, "width");
baton->height = sharp::AttrAsInt32(options, "height");
// Canvas option
std::string canvas = sharp::AttrAsStr(options, "canvas");
if (canvas == "crop") {
baton->canvas = Canvas::CROP;
} else if (canvas == "embed") {
baton->canvas = Canvas::EMBED;
} else if (canvas == "max") {
baton->canvas = Canvas::MAX;
} else if (canvas == "min") {
baton->canvas = Canvas::MIN;
} else if (canvas == "ignore_aspect") {
baton->canvas = Canvas::IGNORE_ASPECT;
}
// Tint chroma
baton->tintA = sharp::AttrAsDouble(options, "tintA");
baton->tintB = sharp::AttrAsDouble(options, "tintB");
// Composite
Napi::Array compositeArray = options.Get("composite").As<Napi::Array>();
for (unsigned int i = 0; i < compositeArray.Length(); i++) {
Napi::Object compositeObject = compositeArray.Get(i).As<Napi::Object>();
Composite *composite = new Composite;
composite->input = sharp::CreateInputDescriptor(compositeObject.Get("input").As<Napi::Object>());
composite->mode = static_cast<VipsBlendMode>(
vips_enum_from_nick(nullptr, VIPS_TYPE_BLEND_MODE, sharp::AttrAsStr(compositeObject, "blend").data()));
composite->gravity = sharp::AttrAsUint32(compositeObject, "gravity");
composite->left = sharp::AttrAsInt32(compositeObject, "left");
composite->top = sharp::AttrAsInt32(compositeObject, "top");
composite->hasOffset = sharp::AttrAsBool(compositeObject, "hasOffset");
composite->tile = sharp::AttrAsBool(compositeObject, "tile");
composite->premultiplied = sharp::AttrAsBool(compositeObject, "premultiplied");
baton->composite.push_back(composite);
}
// Resize options
baton->withoutEnlargement = sharp::AttrAsBool(options, "withoutEnlargement");
baton->position = sharp::AttrAsInt32(options, "position");
baton->resizeBackground = sharp::AttrAsVectorOfDouble(options, "resizeBackground");
baton->kernel = sharp::AttrAsStr(options, "kernel");
baton->fastShrinkOnLoad = sharp::AttrAsBool(options, "fastShrinkOnLoad");
// Join Channel Options
if (options.Has("joinChannelIn")) {
Napi::Array joinChannelArray = options.Get("joinChannelIn").As<Napi::Array>();
for (unsigned int i = 0; i < joinChannelArray.Length(); i++) {
baton->joinChannelIn.push_back(
sharp::CreateInputDescriptor(joinChannelArray.Get(i).As<Napi::Object>()));
}
}
// Operators
baton->flatten = sharp::AttrAsBool(options, "flatten");
baton->flattenBackground = sharp::AttrAsVectorOfDouble(options, "flattenBackground");
baton->negate = sharp::AttrAsBool(options, "negate");
baton->blurSigma = sharp::AttrAsDouble(options, "blurSigma");
baton->brightness = sharp::AttrAsDouble(options, "brightness");
baton->saturation = sharp::AttrAsDouble(options, "saturation");
baton->hue = sharp::AttrAsInt32(options, "hue");
baton->medianSize = sharp::AttrAsUint32(options, "medianSize");
baton->sharpenSigma = sharp::AttrAsDouble(options, "sharpenSigma");
baton->sharpenFlat = sharp::AttrAsDouble(options, "sharpenFlat");
baton->sharpenJagged = sharp::AttrAsDouble(options, "sharpenJagged");
baton->threshold = sharp::AttrAsInt32(options, "threshold");
baton->thresholdGrayscale = sharp::AttrAsBool(options, "thresholdGrayscale");
baton->trimThreshold = sharp::AttrAsDouble(options, "trimThreshold");
baton->gamma = sharp::AttrAsDouble(options, "gamma");
baton->gammaOut = sharp::AttrAsDouble(options, "gammaOut");
baton->linearA = sharp::AttrAsDouble(options, "linearA");
baton->linearB = sharp::AttrAsDouble(options, "linearB");
baton->greyscale = sharp::AttrAsBool(options, "greyscale");
baton->normalise = sharp::AttrAsBool(options, "normalise");
baton->claheWidth = sharp::AttrAsUint32(options, "claheWidth");
baton->claheHeight = sharp::AttrAsUint32(options, "claheHeight");
baton->claheMaxSlope = sharp::AttrAsUint32(options, "claheMaxSlope");
baton->useExifOrientation = sharp::AttrAsBool(options, "useExifOrientation");
baton->angle = sharp::AttrAsInt32(options, "angle");
baton->rotationAngle = sharp::AttrAsDouble(options, "rotationAngle");
baton->rotationBackground = sharp::AttrAsVectorOfDouble(options, "rotationBackground");
baton->rotateBeforePreExtract = sharp::AttrAsBool(options, "rotateBeforePreExtract");
baton->flip = sharp::AttrAsBool(options, "flip");
baton->flop = sharp::AttrAsBool(options, "flop");
baton->extendTop = sharp::AttrAsInt32(options, "extendTop");
baton->extendBottom = sharp::AttrAsInt32(options, "extendBottom");
baton->extendLeft = sharp::AttrAsInt32(options, "extendLeft");
baton->extendRight = sharp::AttrAsInt32(options, "extendRight");
baton->extendBackground = sharp::AttrAsVectorOfDouble(options, "extendBackground");
baton->extractChannel = sharp::AttrAsInt32(options, "extractChannel");
baton->affineMatrix = sharp::AttrAsVectorOfDouble(options, "affineMatrix");
baton->affineBackground = sharp::AttrAsVectorOfDouble(options, "affineBackground");
baton->affineIdx = sharp::AttrAsDouble(options, "affineIdx");
baton->affineIdy = sharp::AttrAsDouble(options, "affineIdy");
baton->affineOdx = sharp::AttrAsDouble(options, "affineOdx");
baton->affineOdy = sharp::AttrAsDouble(options, "affineOdy");
baton->affineInterpolator = vips::VInterpolate::new_from_name(sharp::AttrAsStr(options, "affineInterpolator").data());
baton->removeAlpha = sharp::AttrAsBool(options, "removeAlpha");
baton->ensureAlpha = sharp::AttrAsDouble(options, "ensureAlpha");
if (options.Has("boolean")) {
baton->boolean = sharp::CreateInputDescriptor(options.Get("boolean").As<Napi::Object>());
baton->booleanOp = sharp::GetBooleanOperation(sharp::AttrAsStr(options, "booleanOp"));
}
if (options.Has("bandBoolOp")) {
baton->bandBoolOp = sharp::GetBooleanOperation(sharp::AttrAsStr(options, "bandBoolOp"));
}
if (options.Has("convKernel")) {
Napi::Object kernel = options.Get("convKernel").As<Napi::Object>();
baton->convKernelWidth = sharp::AttrAsUint32(kernel, "width");
baton->convKernelHeight = sharp::AttrAsUint32(kernel, "height");
baton->convKernelScale = sharp::AttrAsDouble(kernel, "scale");
baton->convKernelOffset = sharp::AttrAsDouble(kernel, "offset");
size_t const kernelSize = static_cast<size_t>(baton->convKernelWidth * baton->convKernelHeight);
baton->convKernel = std::unique_ptr<double[]>(new double[kernelSize]);
Napi::Array kdata = kernel.Get("kernel").As<Napi::Array>();
for (unsigned int i = 0; i < kernelSize; i++) {
baton->convKernel[i] = sharp::AttrAsDouble(kdata, i);
}
}
if (options.Has("recombMatrix")) {
baton->recombMatrix = std::unique_ptr<double[]>(new double[9]);
Napi::Array recombMatrix = options.Get("recombMatrix").As<Napi::Array>();
for (unsigned int i = 0; i < 9; i++) {
baton->recombMatrix[i] = sharp::AttrAsDouble(recombMatrix, i);
}
}
baton->colourspace = sharp::GetInterpretation(sharp::AttrAsStr(options, "colourspace"));
if (baton->colourspace == VIPS_INTERPRETATION_ERROR) {
baton->colourspace = VIPS_INTERPRETATION_sRGB;
}
// Output
baton->formatOut = sharp::AttrAsStr(options, "formatOut");
baton->fileOut = sharp::AttrAsStr(options, "fileOut");
baton->withMetadata = sharp::AttrAsBool(options, "withMetadata");
baton->withMetadataOrientation = sharp::AttrAsUint32(options, "withMetadataOrientation");
baton->withMetadataDensity = sharp::AttrAsDouble(options, "withMetadataDensity");
baton->withMetadataIcc = sharp::AttrAsStr(options, "withMetadataIcc");
Napi::Object mdStrs = options.Get("withMetadataStrs").As<Napi::Object>();
Napi::Array mdStrKeys = mdStrs.GetPropertyNames();
for (unsigned int i = 0; i < mdStrKeys.Length(); i++) {
std::string k = sharp::AttrAsStr(mdStrKeys, i);
baton->withMetadataStrs.insert(std::make_pair(k, sharp::AttrAsStr(mdStrs, k)));
}
// Format-specific
baton->jpegQuality = sharp::AttrAsUint32(options, "jpegQuality");
baton->jpegProgressive = sharp::AttrAsBool(options, "jpegProgressive");
baton->jpegChromaSubsampling = sharp::AttrAsStr(options, "jpegChromaSubsampling");
baton->jpegTrellisQuantisation = sharp::AttrAsBool(options, "jpegTrellisQuantisation");
baton->jpegQuantisationTable = sharp::AttrAsUint32(options, "jpegQuantisationTable");
baton->jpegOvershootDeringing = sharp::AttrAsBool(options, "jpegOvershootDeringing");
baton->jpegOptimiseScans = sharp::AttrAsBool(options, "jpegOptimiseScans");
baton->jpegOptimiseCoding = sharp::AttrAsBool(options, "jpegOptimiseCoding");
baton->pngProgressive = sharp::AttrAsBool(options, "pngProgressive");
baton->pngCompressionLevel = sharp::AttrAsUint32(options, "pngCompressionLevel");
baton->pngAdaptiveFiltering = sharp::AttrAsBool(options, "pngAdaptiveFiltering");
baton->pngPalette = sharp::AttrAsBool(options, "pngPalette");
baton->pngQuality = sharp::AttrAsUint32(options, "pngQuality");
baton->pngColours = sharp::AttrAsUint32(options, "pngColours");
baton->pngDither = sharp::AttrAsDouble(options, "pngDither");
baton->webpQuality = sharp::AttrAsUint32(options, "webpQuality");
baton->webpAlphaQuality = sharp::AttrAsUint32(options, "webpAlphaQuality");
baton->webpLossless = sharp::AttrAsBool(options, "webpLossless");
baton->webpNearLossless = sharp::AttrAsBool(options, "webpNearLossless");
baton->webpSmartSubsample = sharp::AttrAsBool(options, "webpSmartSubsample");
baton->webpReductionEffort = sharp::AttrAsUint32(options, "webpReductionEffort");
baton->tiffQuality = sharp::AttrAsUint32(options, "tiffQuality");
baton->tiffPyramid = sharp::AttrAsBool(options, "tiffPyramid");
baton->tiffBitdepth = sharp::AttrAsUint32(options, "tiffBitdepth");
baton->tiffTile = sharp::AttrAsBool(options, "tiffTile");
baton->tiffTileWidth = sharp::AttrAsUint32(options, "tiffTileWidth");
baton->tiffTileHeight = sharp::AttrAsUint32(options, "tiffTileHeight");
baton->tiffXres = sharp::AttrAsDouble(options, "tiffXres");
baton->tiffYres = sharp::AttrAsDouble(options, "tiffYres");
// tiff compression options
baton->tiffCompression = static_cast<VipsForeignTiffCompression>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_TIFF_COMPRESSION,
sharp::AttrAsStr(options, "tiffCompression").data()));
baton->tiffPredictor = static_cast<VipsForeignTiffPredictor>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_TIFF_PREDICTOR,
sharp::AttrAsStr(options, "tiffPredictor").data()));
baton->heifQuality = sharp::AttrAsUint32(options, "heifQuality");
baton->heifLossless = sharp::AttrAsBool(options, "heifLossless");
baton->heifCompression = static_cast<VipsForeignHeifCompression>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_HEIF_COMPRESSION,
sharp::AttrAsStr(options, "heifCompression").data()));
baton->heifSpeed = sharp::AttrAsUint32(options, "heifSpeed");
baton->heifChromaSubsampling = sharp::AttrAsStr(options, "heifChromaSubsampling");
// Animated output
if (sharp::HasAttr(options, "pageHeight")) {
baton->pageHeight = sharp::AttrAsUint32(options, "pageHeight");
}
if (sharp::HasAttr(options, "loop")) {
baton->loop = sharp::AttrAsUint32(options, "loop");
}
if (sharp::HasAttr(options, "delay")) {
baton->delay = sharp::AttrAsInt32Vector(options, "delay");
}
// Tile output
baton->tileSize = sharp::AttrAsUint32(options, "tileSize");
baton->tileOverlap = sharp::AttrAsUint32(options, "tileOverlap");
baton->tileAngle = sharp::AttrAsInt32(options, "tileAngle");
baton->tileBackground = sharp::AttrAsVectorOfDouble(options, "tileBackground");
baton->tileSkipBlanks = sharp::AttrAsInt32(options, "tileSkipBlanks");
baton->tileContainer = static_cast<VipsForeignDzContainer>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_DZ_CONTAINER,
sharp::AttrAsStr(options, "tileContainer").data()));
baton->tileLayout = static_cast<VipsForeignDzLayout>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_DZ_LAYOUT,
sharp::AttrAsStr(options, "tileLayout").data()));
baton->tileFormat = sharp::AttrAsStr(options, "tileFormat");
baton->tileDepth = static_cast<VipsForeignDzDepth>(
vips_enum_from_nick(nullptr, VIPS_TYPE_FOREIGN_DZ_DEPTH,
sharp::AttrAsStr(options, "tileDepth").data()));
baton->tileCentre = sharp::AttrAsBool(options, "tileCentre");
baton->tileId = sharp::AttrAsStr(options, "tileId");
// Force random access for certain operations
if (baton->input->access == VIPS_ACCESS_SEQUENTIAL) {
if (
baton->trimThreshold > 0.0 ||
baton->normalise ||
baton->position == 16 || baton->position == 17 ||
baton->angle % 360 != 0 ||
fmod(baton->rotationAngle, 360.0) != 0.0 ||
baton->useExifOrientation
) {
baton->input->access = VIPS_ACCESS_RANDOM;
}
}
// Function to notify of libvips warnings
Napi::Function debuglog = options.Get("debuglog").As<Napi::Function>();
// Function to notify of queue length changes
Napi::Function queueListener = options.Get("queueListener").As<Napi::Function>();
// Join queue for worker thread
Napi::Function callback = info[1].As<Napi::Function>();
PipelineWorker *worker = new PipelineWorker(callback, baton, debuglog, queueListener);
worker->Receiver().Set("options", options);
worker->Queue();
// Increment queued task counter
g_atomic_int_inc(&sharp::counterQueue);
Napi::Number queueLength = Napi::Number::New(info.Env(), static_cast<double>(sharp::counterQueue));
queueListener.Call(info.This(), { queueLength });
return info.Env().Undefined();
}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists