/
home
/
infinitibizsol
/
mypythonenv
/
lib64
/
python3.6
/
site-packages
/
pandas
/
core
/
groupby
/
File Upload :
llllll
Current File: /home/infinitibizsol/mypythonenv/lib64/python3.6/site-packages/pandas/core/groupby/generic.py
""" Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from collections import abc, namedtuple import copy from functools import partial from textwrap import dedent import typing from typing import ( TYPE_CHECKING, Any, Callable, Dict, FrozenSet, Iterable, List, Mapping, Optional, Sequence, Tuple, Type, Union, cast, ) import warnings import numpy as np from pandas._libs import lib from pandas._typing import FrameOrSeries, FrameOrSeriesUnion from pandas.util._decorators import Appender, Substitution, doc from pandas.core.dtypes.cast import ( maybe_cast_result, maybe_cast_result_dtype, maybe_convert_objects, maybe_downcast_numeric, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_integer_dtype, is_interval_dtype, is_numeric_dtype, is_object_dtype, is_scalar, needs_i8_conversion, ) from pandas.core.dtypes.missing import isna, notna from pandas.core.aggregation import ( maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) import pandas.core.algorithms as algorithms from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.frame import DataFrame from pandas.core.generic import ABCDataFrame, ABCSeries, NDFrame from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _agg_template, _apply_docs, _transform_template, get_groupby, ) from pandas.core.indexes.api import Index, MultiIndex, all_indexes_same import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.util.numba_ import ( NUMBA_FUNC_CACHE, generate_numba_func, maybe_use_numba, split_for_numba, ) from pandas.plotting import boxplot_frame_groupby if TYPE_CHECKING: from pandas.core.internals import Block NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = typing.TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_allowlisted_properties(klass: Type[FrameOrSeries], allowlist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a allowlist. Parameters ---------- klass : DataFrame or Series class class where members are defined. allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in allowlist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_allowlisted_properties(Series, base.series_apply_allowlist) class SeriesGroupBy(GroupBy[Series]): _apply_allowlist = base.series_apply_allowlist def _iterate_slices(self) -> Iterable[Series]: yield self._selected_obj @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4""" ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @doc( _agg_template, examples=_agg_examples_doc, klass="Series", ) def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if isinstance(func, str): return getattr(self, func)(*args, **kwargs) elif isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) try: return self._python_agg_general( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) except (ValueError, KeyError): # Do not catch Numba errors here, we want to raise and not fall back. # TODO: KeyError is raised in _python_agg_general, # see see test_groupby.test_basic result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = create_series_with_explicit_dtype( result, index=index, dtype_if_empty=object ) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") if isinstance(ret, dict): from pandas import concat ret = concat(ret.values(), axis=1, keys=[key.label for key in ret.keys()]) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series): raise SpecificationError("nested renamer is not supported") columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results: Dict[base.OutputKey, Union[Series, DataFrame]] = {} for idx, (name, func) in enumerate(arg): obj = self # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[base.OutputKey(label=name, position=idx)] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle return results output = self._wrap_aggregated_output(results, index=None) return self.obj._constructor_expanddim(output, columns=columns) # TODO: index should not be Optional - see GH 35490 def _wrap_series_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy operation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. index : pd.Index or None Index to apply to the output. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output and columns will only contain one element. The exception is operations that expand dimensions, like ohlc. """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result: Union[Series, DataFrame] if len(output) > 1: result = self.obj._constructor_expanddim(indexed_output, index=index) result.columns = columns elif not columns.empty: result = self.obj._constructor( indexed_output[0], index=index, name=columns[0] ) else: result = self.obj._constructor_expanddim() return result # TODO: Remove index argument, use self.grouper.result_index, see GH 35490 def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output will only contain one element. The exception is operations that expand dimensions, like ohlc. """ result = self._wrap_series_output(output=output, index=index) return self._reindex_output(result) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Series: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : dict[base.OutputKey, Union[Series, np.ndarray]] Dict with a sole key of 0 and a value of the result values. Returns ------- Series Notes ----- output should always contain one element. It is specified as a dict for consistency with DataFrame methods and _wrap_aggregated_output. """ assert len(output) == 1 result = self._wrap_series_output(output=output, index=self.obj.index) # No transformations increase the ndim of the result assert isinstance(result, Series) return result def _wrap_applied_output( self, keys: Index, values: Optional[List[Any]], not_indexed_same: bool = False ) -> FrameOrSeriesUnion: """ Wrap the output of SeriesGroupBy.apply into the expected result. Parameters ---------- keys : Index Keys of groups that Series was grouped by. values : Optional[List[Any]] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- DataFrame or Series """ if len(keys) == 0: # GH #6265 return self.obj._constructor( [], name=self._selection_name, index=keys, dtype=np.float64 ) assert values is not None def _get_index() -> Index: if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result: FrameOrSeriesUnion = self._reindex_output( self.obj._constructor_expanddim(values, index=index) ) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result elif isinstance(values[0], (Series, DataFrame)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=_get_index(), name=self._selection_name ) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise ValueError("Must produce aggregated value") result[name] = output return result @Substitution(klass="Series") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) elif func not in base.transform_kernel_allowlist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) elif func in base.transformation_kernels: return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. # Temporarily set observed for dealing with categoricals. with com.temp_setattr(self, "observed", True): result = getattr(self, func)(*args, **kwargs) return self._transform_fast(result) def _transform_general( self, func, *args, engine="cython", engine_kwargs=None, **kwargs ): """ Transform with a non-str `func`. """ if maybe_use_numba(engine): numba_func, cache_key = generate_numba_func( func, engine_kwargs, kwargs, "groupby_transform" ) klass = type(self._selected_obj) results = [] for name, group in self: object.__setattr__(group, "name", name) if maybe_use_numba(engine): values, index = split_for_numba(group) res = numba_func(values, index, *args) if cache_key not in NUMBA_FUNC_CACHE: NUMBA_FUNC_CACHE[cache_key] = numba_func else: res = func(group, *args, **kwargs) if isinstance(res, (ABCDataFrame, ABCSeries)): res = res._values indexer = self._get_index(name) ser = klass(res, indexer) results.append(ser) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat result = concat(results).sort_index() else: result = self.obj._constructor(dtype=np.float64) # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* user-defined funcs # the cython take a different path (and casting) dtype = self._selected_obj.dtype if is_numeric_dtype(dtype): result = maybe_downcast_to_dtype(result, dtype) result.name = self._selected_obj.name result.index = self._selected_obj.index return result def _transform_fast(self, result) -> Series: """ fast version of transform, only applicable to builtin/cythonizable functions """ ids, _, ngroup = self.grouper.group_info result = result.reindex(self.grouper.result_index, copy=False) out = algorithms.take_1d(result._values, ids) return self.obj._constructor(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x, *args, **kwargs) -> bool: b = wrapper(x, *args, **kwargs) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna: bool = True) -> Series: """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new unique observation mask = codes == -1 if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self._selection_name) return self._reindex_output(result, fill_value=0) @doc(Series.describe) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True ): from pandas.core.reshape.merge import _get_join_indexers from pandas.core.reshape.tile import cut if bins is not None and not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) ids, _, _ = self.grouper.group_info val = self.obj._values # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) lev = lab.cat.categories lab = lev.take(lab.cat.codes) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? sorter = np.lexsort((lab.left, lab.right, ids)) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] levels = [ping.group_index for ping in self.grouper.groupings] + [lev] names = self.grouper.names + [self._selection_name] if dropna: mask = codes[-1] != -1 if mask.all(): dropna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, codes[-1]] _, idx = _get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self._selection_name) def count(self) -> Series: """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._values mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) result = self.obj._constructor( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) return self._reindex_output(result, fill_value=0) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) if fill_method is None: # GH30463 fill_method = "pad" limit = 0 filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.codes) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_allowlisted_properties(DataFrame, base.dataframe_apply_allowlist) class DataFrameGroupBy(GroupBy[DataFrame]): _apply_allowlist = base.dataframe_apply_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more.""" ) @doc( _agg_template, examples=_agg_examples_doc, klass="DataFrame", ) def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): relabeling, func, columns, order = reconstruct_func(func, **kwargs) if maybe_use_numba(engine): return self._python_agg_general( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) func = maybe_mangle_lambdas(func) result, how = self._aggregate(func, *args, **kwargs) if how is None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not allow self.axis == 1 result = self._aggregate_frame(func) else: # try to treat as if we are passing a list try: result = self._aggregate_multiple_funcs([func], _axis=self.axis) # select everything except for the last level, which is the one # containing the name of the function(s), see GH 32040 result.columns = result.columns.rename( [self._selected_obj.columns.name] * result.columns.nlevels ).droplevel(-1) except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) except AttributeError: # catch exception from line 969 # (Series does not have attribute "columns"), see GH 35246 result = self._aggregate_frame(func) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) return result._convert(datetime=True) agg = aggregate def _iterate_slices(self) -> Iterable[Series]: obj = self._selected_obj if self.axis == 1: obj = obj.T if isinstance(obj, Series) and obj.name not in self.exclusions: # Occurs when doing DataFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> DataFrame: agg_blocks, agg_items = self._cython_agg_blocks( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_blocks(agg_blocks, items=agg_items) def _cython_agg_blocks( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> "Tuple[List[Block], Index]": # TODO: the actual managing of mgr_locs is a PITA # here, it should happen via BlockManager.combine data: BlockManager = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) agg_blocks: List[Block] = [] new_items: List[np.ndarray] = [] deleted_items: List[np.ndarray] = [] # Some object-dtype blocks might be split into List[Block[T], Block[U]] split_items: List[np.ndarray] = [] split_frames: List[DataFrame] = [] no_result = object() for block in data.blocks: # Avoid inheriting result from earlier in the loop result = no_result locs = block.mgr_locs.as_array try: result, _ = self.grouper.aggregate( block.values, how, axis=1, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block assert how == "ohlc" deleted_items.append(locs) continue # call our grouper again with only this block obj = self.obj[data.items[locs]] if obj.shape[1] == 1: # Avoid call to self.values that can occur in DataFrame # reductions; see GH#28949 obj = obj.iloc[:, 0] # Create SeriesGroupBy with observed=True so that it does # not try to add missing categories if grouping over multiple # Categoricals. This will done by later self._reindex_output() # Doing it here creates an error. See GH#34951 s = get_groupby(obj, self.grouper, observed=True) try: result = s.aggregate(lambda x: alt(x, axis=self.axis)) except TypeError: # we may have an exception in trying to aggregate # continue and exclude the block deleted_items.append(locs) continue else: result = cast(DataFrame, result) # unwrap DataFrame to get array if len(result._mgr.blocks) != 1: # We've split an object block! Everything we've assumed # about a single block input returning a single block output # is a lie. To keep the code-path for the typical non-split case # clean, we choose to clean up this mess later on. split_items.append(locs) split_frames.append(result) continue assert len(result._mgr.blocks) == 1 result = result._mgr.blocks[0].values if isinstance(result, np.ndarray) and result.ndim == 1: result = result.reshape(1, -1) assert not isinstance(result, DataFrame) if result is not no_result: # see if we can cast the block to the desired dtype # this may not be the original dtype dtype = maybe_cast_result_dtype(block.dtype, how) result = maybe_downcast_numeric(result, dtype) if block.is_extension and isinstance(result, np.ndarray): # e.g. block.values was an IntegerArray # (1, N) case can occur if block.values was Categorical # and result is ndarray[object] # TODO(EA2D): special casing not needed with 2D EAs assert result.ndim == 1 or result.shape[0] == 1 try: # Cast back if feasible result = type(block.values)._from_sequence( result.ravel(), dtype=block.values.dtype ) except (ValueError, TypeError): # reshape to be valid for non-Extension Block result = result.reshape(1, -1) agg_block: Block = block.make_block(result) new_items.append(locs) agg_blocks.append(agg_block) if not (agg_blocks or split_frames): raise DataError("No numeric types to aggregate") if split_items: # Clean up the mess left over from split blocks. for locs, result in zip(split_items, split_frames): assert len(locs) == result.shape[1] for i, loc in enumerate(locs): new_items.append(np.array([loc], dtype=locs.dtype)) agg_blocks.append(result.iloc[:, [i]]._mgr.blocks[0]) # reset the locs in the blocks to correspond to our # current ordering indexer = np.concatenate(new_items) agg_items = data.items.take(np.sort(indexer)) if deleted_items: # we need to adjust the indexer to account for the # items we have removed # really should be done in internals :< deleted = np.concatenate(deleted_items) ai = np.arange(len(data)) mask = np.zeros(len(data)) mask[deleted] = 1 indexer = (ai - mask.cumsum())[indexer] offset = 0 for blk in agg_blocks: loc = len(blk.mgr_locs) blk.mgr_locs = indexer[offset : (offset + loc)] offset += loc return agg_blocks, agg_items def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result: Dict[Union[int, str], Union[NDFrame, np.ndarray]] = {} if axis != obj._info_axis_number: for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: for name in self.indices: data = self.get_group(name, obj=obj) fres = func(data, *args, **kwargs) result[name] = fres return self._wrap_frame_output(result, obj) def _aggregate_item_by_item(self, func, *args, **kwargs) -> DataFrame: # only for axis==0 obj = self._obj_with_exclusions result: Dict[Union[int, str], NDFrame] = {} cannot_agg = [] for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) cast = self._transform_should_cast(func) try: result[item] = colg.aggregate(func, *args, **kwargs) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise # otherwise we get here from an AttributeError in _make_wrapper cannot_agg.append(item) continue else: if cast: result[item] = maybe_cast_result(result[item], data) result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) return self.obj._constructor(result, columns=result_columns) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: return self.obj._constructor(index=keys) # GH12824 first_not_none = next(com.not_none(*values), None) if first_not_none is None: # GH9684 - All values are None, return an empty frame. return self.obj._constructor() elif isinstance(first_not_none, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: key_index = self.grouper.result_index if self.as_index else None if isinstance(first_not_none, Series): # this is to silence a DeprecationWarning # TODO: Remove when default dtype of empty Series is object kwargs = first_not_none._construct_axes_dict() backup = create_series_with_explicit_dtype( **kwargs, dtype_if_empty=object ) values = [x if (x is not None) else backup for x in values] v = values[0] if isinstance(v, (np.ndarray, Index, Series)) or not self.as_index: if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = all_indexes_same((x.index for x in values)) singular_series = len(values) == 1 and applied_index.nlevels == 1 # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = {v.name for v in values} if len(names) == 1: index.name = list(names)[0] # Combine values # vstack+constructor is faster than concat and handles MI-columns stacked_values = np.vstack([np.asarray(v) for v in values]) if self.axis == 0: index = key_index columns = v.index.copy() if columns.name is None: # GH6124 - propagate name of Series when it's consistent names = {v.name for v in values} if len(names) == 1: columns.name = list(names)[0] else: index = v.index columns = key_index stacked_values = stacked_values.T result = self.obj._constructor( stacked_values, index=index, columns=columns ) elif not self.as_index: # We add grouping column below, so create a frame here result = DataFrame( values, index=key_index, columns=[self._selection] ) else: # GH#1738: values is list of arrays of unequal lengths # fall through to the outer else clause # TODO: sure this is right? we used to do this # after raising AttributeError above return self.obj._constructor_sliced( values, index=key_index, name=self._selection_name ) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(needs_i8_conversion).any(): result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) if not self.as_index: self._insert_inaxis_grouper_inplace(result) return self._reindex_output(result) # values are not series or array-like but scalars else: # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns return self.obj._constructor_sliced(values, index=key_index) def _transform_general( self, func, *args, engine="cython", engine_kwargs=None, **kwargs ): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) if maybe_use_numba(engine): numba_func, cache_key = generate_numba_func( func, engine_kwargs, kwargs, "groupby_transform" ) else: fast_path, slow_path = self._define_paths(func, *args, **kwargs) for name, group in gen: object.__setattr__(group, "name", name) if maybe_use_numba(engine): values, index = split_for_numba(group) res = numba_func(values, index, *args) if cache_key not in NUMBA_FUNC_CACHE: NUMBA_FUNC_CACHE[cache_key] = numba_func # Return the result as a DataFrame for concatenation later res = self.obj._constructor( res, index=group.index, columns=group.columns ) else: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError as err: msg = "transform must return a scalar value for each group" raise ValueError(msg) from err if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = self.obj._constructor( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): # optimized transforms func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) elif func not in base.transform_kernel_allowlist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) elif func in base.transformation_kernels: return getattr(self, func)(*args, **kwargs) # GH 30918 # Use _transform_fast only when we know func is an aggregation if func in base.reduction_kernels: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. # Temporarily set observed for dealing with categoricals. with com.temp_setattr(self, "observed", True): result = getattr(self, func)(*args, **kwargs) if isinstance(result, DataFrame) and result.columns.equals( self._obj_with_exclusions.columns ): return self._transform_fast(result) return self._transform_general( func, engine=engine, engine_kwargs=engine_kwargs, *args, **kwargs ) def _transform_fast(self, result: DataFrame) -> DataFrame: """ Fast transform path for aggregations """ obj = self._obj_with_exclusions # for each col, reshape to to size of original frame # by take operation ids, _, ngroup = self.grouper.group_info result = result.reindex(self.grouper.result_index, copy=False) output = [] for i, _ in enumerate(result.columns): output.append(algorithms.take_1d(result.iloc[:, i].values, ids)) return self.obj._constructor._from_arrays( output, columns=result.columns, index=obj.index ) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except AssertionError: raise except Exception: # GH#29631 For user-defined function, we cant predict what may be # raised; see test_transform.test_transform_fastpath_raises return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj: DataFrame, wrapper) -> DataFrame: # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) except TypeError: # e.g. trying to call nanmean with string values pass else: inds.append(i) if len(output) == 0: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return self.obj._constructor(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding filtered elements. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. Parameters ---------- func : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( f"filter function returned a {type(res).__name__}, " "but expected a scalar bool" ) return self._apply_filter(indices, dropna) def __getitem__(self, key): # per GH 23566 if isinstance(key, tuple) and len(key) > 1: # if len == 1, then it becomes a SeriesGroupBy and this is actually # valid syntax, so don't raise warning warnings.warn( "Indexing with multiple keys (implicitly converted to a tuple " "of keys) will be deprecated, use a list instead.", FutureWarning, stacklevel=2, ) return super().__getitem__(key) def _gotitem(self, key, ndim: int, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index, observed=self.observed, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, selection=key, grouper=self.grouper, observed=self.observed ) raise AssertionError("invalid ndim for _gotitem") def _wrap_frame_output(self, result, obj) -> DataFrame: result_index = self.grouper.levels[0] if self.axis == 0: return self.obj._constructor( result, index=obj.columns, columns=result_index ).T else: return self.obj._constructor(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self) -> BlockManager: obj = self._obj_with_exclusions if self.axis == 1: return obj.T._mgr else: return obj._mgr def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip( *map( reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings], ), ) ) columns = result.columns for name, lev, in_axis in izip: # GH #28549 # When using .apply(-), name will be in columns already if in_axis and name not in columns: result.insert(0, name, lev) def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> DataFrame: """ Wraps the output of DataFrameGroupBy aggregations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} name = self._obj_with_exclusions._get_axis(1 - self.axis).name columns = Index([key.label for key in output], name=name) result = self.obj._constructor(indexed_output) result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: result.index = self.grouper.result_index if self.axis == 1: result = result.T return self._reindex_output(result) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy transformations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result = self.obj._constructor(indexed_output) result.columns = columns result.index = self.obj.index return result def _wrap_agged_blocks(self, blocks: "Sequence[Block]", items: Index) -> DataFrame: if not self.as_index: index = np.arange(blocks[0].values.shape[-1]) mgr = BlockManager(blocks, axes=[items, index]) result = self.obj._constructor(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, axes=[items, index]) result = self.obj._constructor(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func): from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self): """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 # TODO(2DEA): reshape would not be necessary with 2D EAs vals = ((mask & ~isna(blk.values).reshape(blk.shape)) for blk in data.blocks) locs = (blk.mgr_locs for blk in data.blocks) counted = ( lib.count_level_2d(x, labels=ids, max_bin=ngroups, axis=1) for x in vals ) blocks = [make_block(val, placement=loc) for val, loc in zip(counted, locs)] return self._wrap_agged_blocks(blocks, items=data.items) def nunique(self, dropna: bool = True): """ Return DataFrame with counts of unique elements in each position. Parameters ---------- dropna : bool, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() value1 value2 id egg 1 1 ham 1 2 spam 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ from pandas.core.reshape.concat import concat # TODO: this is duplicative of how GroupBy naturally works # Try to consolidate with normal wrapping functions obj = self._obj_with_exclusions axis_number = obj._get_axis_number(self.axis) other_axis = int(not axis_number) if axis_number == 0: iter_func = obj.items else: iter_func = obj.iterrows results = concat( [ SeriesGroupBy(content, selection=label, grouper=self.grouper).nunique( dropna ) for label, content in iter_func() ], axis=1, ) if axis_number == 1: results = results.T results._get_axis(other_axis).names = obj._get_axis(other_axis).names if not self.as_index: results.index = ibase.default_index(len(results)) self._insert_inaxis_grouper_inplace(results) return results boxplot = boxplot_frame_groupby def _recast_datetimelike_result(result: DataFrame) -> DataFrame: """ If we have date/time like in the original, then coerce dates as we are stacking can easily have object dtypes here. Parameters ---------- result : DataFrame Returns ------- DataFrame Notes ----- - Assumes Groupby._selected_obj has ndim==2 and at least one datetimelike column """ result = result.copy() obj_cols = [ idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes.iloc[idx]) ] # See GH#26285 for n in obj_cols: converted = maybe_convert_objects( result.iloc[:, n].values, convert_numeric=False ) result.iloc[:, n] = converted return result
Copyright ©2k19 -
Hexid
|
Tex7ure