/
home
/
infinitibizsol
/
mypythonenv
/
lib64
/
python3.6
/
site-packages
/
pandas
/
tests
/
frame
/
File Upload :
llllll
Current File: /home/infinitibizsol/mypythonenv/lib64/python3.6/site-packages/pandas/tests/frame/test_operators.py
from decimal import Decimal import operator import re import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm class TestDataFrameUnaryOperators: # __pos__, __neg__, __inv__ @pytest.mark.parametrize( "df,expected", [ (pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})), (pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})), ( pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}), pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}), ), ], ) def test_neg_numeric(self, df, expected): tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df, expected", [ (np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)), ([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]), ], ) def test_neg_object(self, df, expected): # GH#21380 df = pd.DataFrame({"a": df}) expected = pd.DataFrame({"a": expected}) tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": ["a", "b"]}), pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}), ], ) def test_neg_raises(self, df): msg = ( "bad operand type for unary -: 'str'|" r"Unary negative expects numeric dtype, not datetime64\[ns\]" ) with pytest.raises(TypeError, match=msg): (-df) with pytest.raises(TypeError, match=msg): (-df["a"]) def test_invert(self, float_frame): df = float_frame tm.assert_frame_equal(-(df < 0), ~(df < 0)) def test_invert_mixed(self): shape = (10, 5) df = pd.concat( [ pd.DataFrame(np.zeros(shape, dtype="bool")), pd.DataFrame(np.zeros(shape, dtype=int)), ], axis=1, ignore_index=True, ) result = ~df expected = pd.concat( [ pd.DataFrame(np.ones(shape, dtype="bool")), pd.DataFrame(-np.ones(shape, dtype=int)), ], axis=1, ignore_index=True, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}), ], ) def test_pos_numeric(self, df): # GH#16073 tm.assert_frame_equal(+df, df) tm.assert_series_equal(+df["a"], df["a"]) @pytest.mark.parametrize( "df", [ # numpy changing behavior in the future pytest.param( pd.DataFrame({"a": ["a", "b"]}), marks=[pytest.mark.filterwarnings("ignore")], ), pd.DataFrame({"a": np.array([-1, 2], dtype=object)}), pd.DataFrame({"a": [Decimal("-1.0"), Decimal("2.0")]}), ], ) def test_pos_object(self, df): # GH#21380 tm.assert_frame_equal(+df, df) tm.assert_series_equal(+df["a"], df["a"]) @pytest.mark.parametrize( "df", [pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])})] ) def test_pos_raises(self, df): msg = "Unary plus expects .* dtype, not datetime64\\[ns\\]" with pytest.raises(TypeError, match=msg): (+df) with pytest.raises(TypeError, match=msg): (+df["a"]) class TestDataFrameLogicalOperators: # &, |, ^ def test_logical_ops_empty_frame(self): # GH#5808 # empty frames, non-mixed dtype df = DataFrame(index=[1]) result = df & df tm.assert_frame_equal(result, df) result = df | df tm.assert_frame_equal(result, df) df2 = DataFrame(index=[1, 2]) result = df & df2 tm.assert_frame_equal(result, df2) dfa = DataFrame(index=[1], columns=["A"]) result = dfa & dfa expected = DataFrame(False, index=[1], columns=["A"]) tm.assert_frame_equal(result, expected) def test_logical_ops_bool_frame(self): # GH#5808 df1a_bool = DataFrame(True, index=[1], columns=["A"]) result = df1a_bool & df1a_bool tm.assert_frame_equal(result, df1a_bool) result = df1a_bool | df1a_bool tm.assert_frame_equal(result, df1a_bool) def test_logical_ops_int_frame(self): # GH#5808 df1a_int = DataFrame(1, index=[1], columns=["A"]) df1a_bool = DataFrame(True, index=[1], columns=["A"]) result = df1a_int | df1a_bool tm.assert_frame_equal(result, df1a_bool) # Check that this matches Series behavior res_ser = df1a_int["A"] | df1a_bool["A"] tm.assert_series_equal(res_ser, df1a_bool["A"]) def test_logical_ops_invalid(self): # GH#5808 df1 = DataFrame(1.0, index=[1], columns=["A"]) df2 = DataFrame(True, index=[1], columns=["A"]) msg = re.escape("unsupported operand type(s) for |: 'float' and 'bool'") with pytest.raises(TypeError, match=msg): df1 | df2 df1 = DataFrame("foo", index=[1], columns=["A"]) df2 = DataFrame(True, index=[1], columns=["A"]) msg = re.escape("unsupported operand type(s) for |: 'str' and 'bool'") with pytest.raises(TypeError, match=msg): df1 | df2 def test_logical_operators(self): def _check_bin_op(op): result = op(df1, df2) expected = DataFrame( op(df1.values, df2.values), index=df1.index, columns=df1.columns ) assert result.values.dtype == np.bool_ tm.assert_frame_equal(result, expected) def _check_unary_op(op): result = op(df1) expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ tm.assert_frame_equal(result, expected) df1 = { "a": {"a": True, "b": False, "c": False, "d": True, "e": True}, "b": {"a": False, "b": True, "c": False, "d": False, "e": False}, "c": {"a": False, "b": False, "c": True, "d": False, "e": False}, "d": {"a": True, "b": False, "c": False, "d": True, "e": True}, "e": {"a": True, "b": False, "c": False, "d": True, "e": True}, } df2 = { "a": {"a": True, "b": False, "c": True, "d": False, "e": False}, "b": {"a": False, "b": True, "c": False, "d": False, "e": False}, "c": {"a": True, "b": False, "c": True, "d": False, "e": False}, "d": {"a": False, "b": False, "c": False, "d": True, "e": False}, "e": {"a": False, "b": False, "c": False, "d": False, "e": True}, } df1 = DataFrame(df1) df2 = DataFrame(df2) _check_bin_op(operator.and_) _check_bin_op(operator.or_) _check_bin_op(operator.xor) _check_unary_op(operator.inv) # TODO: belongs elsewhere def test_logical_with_nas(self): d = DataFrame({"a": [np.nan, False], "b": [True, True]}) # GH4947 # bool comparisons should return bool result = d["a"] | d["b"] expected = Series([False, True]) tm.assert_series_equal(result, expected) # GH4604, automatic casting here result = d["a"].fillna(False) | d["b"] expected = Series([True, True]) tm.assert_series_equal(result, expected) result = d["a"].fillna(False, downcast=False) | d["b"] expected = Series([True, True]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left, right, op, expected", [ ( [True, False, np.nan], [True, False, True], operator.and_, [True, False, False], ), ( [True, False, True], [True, False, np.nan], operator.and_, [True, False, False], ), ( [True, False, np.nan], [True, False, True], operator.or_, [True, False, False], ), ( [True, False, True], [True, False, np.nan], operator.or_, [True, False, True], ), ], ) def test_logical_operators_nans(self, left, right, op, expected): # GH 13896 result = op(DataFrame(left), DataFrame(right)) expected = DataFrame(expected) tm.assert_frame_equal(result, expected)
Copyright ©2k19 -
Hexid
|
Tex7ure